Paper Reading AI Learner

Optimal transport meets noisy label robust loss and MixUp regularization for domain adaptation

2022-06-22 15:40:52
Kilian Fatras, Hiroki Naganuma, Ioannis Mitliagkas

Abstract

It is common in computer vision to be confronted with domain shift: images which have the same class but different acquisition conditions. In domain adaptation (DA), one wants to classify unlabeled target images using source labeled images. Unfortunately, deep neural networks trained on a source training set perform poorly on target images which do not belong to the training domain. One strategy to improve these performances is to align the source and target image distributions in an embedded space using optimal transport (OT). However OT can cause negative transfer, i.e. aligning samples with different labels, which leads to overfitting especially in the presence of label shift between domains. In this work, we mitigate negative alignment by explaining it as a noisy label assignment to target images. We then mitigate its effect by appropriate regularization. We propose to couple the MixUp regularization \citep{zhang2018mixup} with a loss that is robust to noisy labels in order to improve domain adaptation performance. We show in an extensive ablation study that a combination of the two techniques is critical to achieve improved performance. Finally, we evaluate our method, called \textsc{mixunbot}, on several benchmarks and real-world DA problems.

Abstract (translated)

URL

https://arxiv.org/abs/2206.11180

PDF

https://arxiv.org/pdf/2206.11180


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot