Paper Reading AI Learner

Efficient Adaptive Federated Optimization of Federated Learning for IoT

2022-06-23 01:49:12
Zunming Chen, Hongyan Cui, Ensen Wu, Yu Xi

Abstract

The proliferation of the Internet of Things (IoT) and widespread use of devices with sensing, computing, and communication capabilities have motivated intelligent applications empowered by artificial intelligence. The classical artificial intelligence algorithms require centralized data collection and processing which are challenging in realistic intelligent IoT applications due to growing data privacy concerns and distributed datasets. Federated Learning (FL) has emerged as a distributed privacy-preserving learning framework that enables IoT devices to train global model through sharing model parameters. However, inefficiency due to frequent parameters transmissions significantly reduce FL performance. Existing acceleration algorithms consist of two main type including local update considering trade-offs between communication and computation and parameter compression considering trade-offs between communication and precision. Jointly considering these two trade-offs and adaptively balancing their impacts on convergence have remained unresolved. To solve the problem, this paper proposes a novel efficient adaptive federated optimization (EAFO) algorithm to improve efficiency of FL, which minimizes the learning error via jointly considering two variables including local update and parameter compression and enables FL to adaptively adjust the two variables and balance trade-offs among computation, communication and precision. The experiment results illustrate that comparing with state-of-the-art algorithms, the proposed EAFO can achieve higher accuracies faster.

Abstract (translated)

URL

https://arxiv.org/abs/2206.11448

PDF

https://arxiv.org/pdf/2206.11448.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot