Paper Reading AI Learner

Latent Policies for Adversarial Imitation Learning

2022-06-22 18:06:26
Tianyu Wang, Nikhil Karnwal, Nikolay Atanasov

Abstract

This paper considers learning robot locomotion and manipulation tasks from expert demonstrations. Generative adversarial imitation learning (GAIL) trains a discriminator that distinguishes expert from agent transitions, and in turn use a reward defined by the discriminator output to optimize a policy generator for the agent. This generative adversarial training approach is very powerful but depends on a delicate balance between the discriminator and the generator training. In high-dimensional problems, the discriminator training may easily overfit or exploit associations with task-irrelevant features for transition classification. A key insight of this work is that performing imitation learning in a suitable latent task space makes the training process stable, even in challenging high-dimensional problems. We use an action encoder-decoder model to obtain a low-dimensional latent action space and train a LAtent Policy using Adversarial imitation Learning (LAPAL). The encoder-decoder model can be trained offline from state-action pairs to obtain a task-agnostic latent action representation or online, simultaneously with the discriminator and generator training, to obtain a task-aware latent action representation. We demonstrate that LAPAL training is stable, with near-monotonic performance improvement, and achieves expert performance in most locomotion and manipulation tasks, while a GAIL baseline converges slower and does not achieve expert performance in high-dimensional environments.

Abstract (translated)

URL

https://arxiv.org/abs/2206.11299

PDF

https://arxiv.org/pdf/2206.11299.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot