Paper Reading AI Learner

A multi-model-based deep learning framework for short text multiclass classification with the imbalanced and extremely small data set

2022-06-24 00:51:02
Jiajun Tong, Zhixiao Wang, Xiaobin Rui

Abstract

Text classification plays an important role in many practical applications. In the real world, there are extremely small datasets. Most existing methods adopt pre-trained neural network models to handle this kind of dataset. However, these methods are either difficult to deploy on mobile devices because of their large output size or cannot fully extract the deep semantic information between phrases and clauses. This paper proposes a multimodel-based deep learning framework for short-text multiclass classification with an imbalanced and extremely small data set. Our framework mainly includes five layers: The encoder layer uses DISTILBERT to obtain context-sensitive dynamic word vectors that are difficult to represent in traditional feature engineering methods. Since the transformer part of this layer is distilled, our framework is compressed. Then, we use the next two layers to extract deep semantic information. The output of the encoder layer is sent to a bidirectional LSTM network, and the feature matrix is extracted hierarchically through the LSTM at the word and sentence level to obtain the fine-grained semantic representation. After that, the max-pooling layer converts the feature matrix into a lower-dimensional matrix, preserving only the obvious features. Finally, the feature matrix is taken as the input of a fully connected softmax layer, which contains a function that can convert the predicted linear vector into the output value as the probability of the text in each classification. Extensive experiments on two public benchmarks demonstrate the effectiveness of our proposed approach on an extremely small data set. It retains the state-of-the-art baseline performance in terms of precision, recall, accuracy, and F1 score, and through the model size, training time, and convergence epoch, we can conclude that our method can be deployed faster and lighter on mobile devices.

Abstract (translated)

URL

https://arxiv.org/abs/2206.12027

PDF

https://arxiv.org/pdf/2206.12027.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot