Paper Reading AI Learner

CoSP: Co-supervised pretraining of pocket and ligand

2022-06-23 16:58:44
Zhangyang Gao, Cheng Tan, Lirong Wu, Stan Z. Li

Abstract

Can we inject the pocket-ligand interaction knowledge into the pre-trained model and jointly learn their chemical space? Pretraining molecules and proteins has attracted considerable attention in recent years, while most of these approaches focus on learning one of the chemical spaces and lack the injection of biological knowledge. We propose a co-supervised pretraining (CoSP) framework to simultaneously learn 3D pocket and ligand representations. We use a gated geometric message passing layer to model both 3D pockets and ligands, where each node's chemical features, geometric position and orientation are considered. To learn biological meaningful embeddings, we inject the pocket-ligand interaction knowledge into the pretraining model via contrastive loss. Considering the specificity of molecules, we further propose a chemical similarity-enhanced negative sampling strategy to improve the contrastive learning performance. Through extensive experiments, we conclude that CoSP can achieve competitive results in pocket matching, molecule property predictions, and virtual screening.

Abstract (translated)

URL

https://arxiv.org/abs/2206.12241

PDF

https://arxiv.org/pdf/2206.12241.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot