Paper Reading AI Learner

Vision Transformer for Contrastive Clustering

2022-06-26 17:00:35
Hua-Bao Ling, Bowen Zhu, Dong Huang, Ding-Hua Chen, Chang-Dong Wang, Jian-Huang Lai

Abstract

Vision Transformer (ViT) has shown its advantages over the convolutional neural network (CNN) with its ability to capture global long-range dependencies for visual representation learning. Besides ViT, contrastive learning is another popular research topic recently. While previous contrastive learning works are mostly based on CNNs, some latest studies have attempted to jointly model the ViT and the contrastive learning for enhanced self-supervised learning. Despite the considerable progress, these combinations of ViT and contrastive learning mostly focus on the instance-level contrastiveness, which often overlook the contrastiveness of the global clustering structures and also lack the ability to directly learn the clustering result (e.g., for images). In view of this, this paper presents an end-to-end deep image clustering approach termed Vision Transformer for Contrastive Clustering (VTCC), which for the first time, to the best of our knowledge, unifies the Transformer and the contrastive learning for the image clustering task. Specifically, with two random augmentations performed on each image in a mini-batch, we utilize a ViT encoder with two weight-sharing views as the backbone to learn the representations for the augmented samples. To remedy the potential instability of the ViT, we incorporate a convolutional stem, which uses multiple stacked small convolutions instead of a big convolution in the patch projection layer, to split each augmented sample into a sequence of patches. With representations learned via the backbone, an instance projector and a cluster projector are further utilized for the instance-level contrastive learning and the global clustering structure learning, respectively. Extensive experiments on eight image datasets demonstrate the stability (during the training-from-scratch) and the superiority (in clustering performance) of VTCC over the state-of-the-art.

Abstract (translated)

URL

https://arxiv.org/abs/2206.12925

PDF

https://arxiv.org/pdf/2206.12925.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot