Paper Reading AI Learner

UI Layers Merger: Merging UI layers via Visual Learning and Boundary Prior

2022-06-18 16:09:28
Yun-nong Chen, Yan-kun Zhen, Chu-ning Shi, Jia-zhi Li, Ting-ting Zhou, Yan-fang Chang, Ling-yun Sun, Liu-qing Chen

Abstract

With the fast-growing GUI development workload in the Internet industry, some work on intelligent methods attempted to generate maintainable front-end code from UI screenshots. It can be more suitable for utilizing UI design drafts that contain UI metadata. However, fragmented layers inevitably appear in the UI design drafts which greatly reduces the quality of code generation. None of the existing GUI automated techniques detects and merges the fragmented layers to improve the accessibility of generated code. In this paper, we propose UI Layers Merger (UILM), a vision-based method, which can automatically detect and merge fragmented layers into UI components. Our UILM contains Merging Area Detector (MAD) and a layers merging algorithm. MAD incorporates the boundary prior knowledge to accurately detect the boundaries of UI components. Then, the layers merging algorithm can search out the associated layers within the components' boundaries and merge them into a whole part. We present a dynamic data augmentation approach to boost the performance of MAD. We also construct a large-scale UI dataset for training the MAD and testing the performance of UILM. The experiment shows that the proposed method outperforms the best baseline regarding merging area detection and achieves a decent accuracy regarding layers merging.

Abstract (translated)

URL

https://arxiv.org/abs/2206.13389

PDF

https://arxiv.org/pdf/2206.13389.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot