Paper Reading AI Learner

Speak Like a Professional: Increasing Speech Intelligibility by Mimicking Professional Announcer Voice with Voice Conversion

2022-06-27 02:39:04
Tuan Vu Ho, Maori Kobayashi, Masato Akagi

Abstract

In most of practical scenarios, the announcement system must deliver speech messages in a noisy environment, in which the background noise cannot be cancelled out. The local noise reduces speech intelligibility and increases listening effort of the listener, hence hamper the effectiveness of announcement system. There has been reported that voices of professional announcers are clearer and more comprehensive than that of non-expert speakers in noisy environment. This finding suggests that the speech intelligibility might be related to the speaking style of professional announcer, which can be adapted using voice conversion method. Motivated by this idea, this paper proposes a speech intelligibility enhancement in noisy environment by applying voice conversion method on non-professional voice. We discovered that the professional announcers and non-professional speakers are clusterized into different clusters on the speaker embedding plane. This implies that the speech intelligibility can be controlled as an independent feature of speaker individuality. To examine the advantage of converted voice in noisy environment, we experimented using test words masked in pink noise at different SNR levels. The results of objective and subjective evaluations confirm that the speech intelligibility of converted voice is higher than that of original voice in low SNR conditions.

Abstract (translated)

URL

https://arxiv.org/abs/2206.13021

PDF

https://arxiv.org/pdf/2206.13021.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot