Paper Reading AI Learner

NeuRIS: Neural Reconstruction of Indoor Scenes Using Normal Priors

2022-06-27 19:22:03
Jiepeng Wang, Peng Wang, Xiaoxiao Long, Christian Theobalt, Taku Komura, Lingjie Liu, Wenping Wang

Abstract

Reconstructing 3D indoor scenes from 2D images is an important task in many computer vision and graphics applications. A main challenge in this task is that large texture-less areas in typical indoor scenes make existing methods struggle to produce satisfactory reconstruction results. We propose a new method, named NeuRIS, for high quality reconstruction of indoor scenes. The key idea of NeuRIS is to integrate estimated normal of indoor scenes as a prior in a neural rendering framework for reconstructing large texture-less shapes and, importantly, to do this in an adaptive manner to also enable the reconstruction of irregular shapes with fine details. Specifically, we evaluate the faithfulness of the normal priors on-the-fly by checking the multi-view consistency of reconstruction during the optimization process. Only the normal priors accepted as faithful will be utilized for 3D reconstruction, which typically happens in the regions of smooth shapes possibly with weak texture. However, for those regions with small objects or thin structures, for which the normal priors are usually unreliable, we will only rely on visual features of the input images, since such regions typically contain relatively rich visual features (e.g., shade changes and boundary contours). Extensive experiments show that NeuRIS significantly outperforms the state-of-the-art methods in terms of reconstruction quality.

Abstract (translated)

URL

https://arxiv.org/abs/2206.13597

PDF

https://arxiv.org/pdf/2206.13597.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot