Paper Reading AI Learner

Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit Regularization

2019-01-17 21:53:08
Navid Azizan, Babak Hassibi

Abstract

Stochastic descent methods (of the gradient and mirror varieties) have become increasingly popular in optimization. In fact, it is now widely recognized that the success of deep learning is not only due to the special deep architecture of the models, but also due to the behavior of the stochastic descent methods used, which play a key role in reaching "good" solutions that generalize well to unseen data. In an attempt to shed some light on why this is the case, we revisit some minimax properties of stochastic gradient descent (SGD) for the square loss of linear models---originally developed in the 1990's---and extend them to general stochastic mirror descent (SMD) algorithms for general loss functions and nonlinear models. In particular, we show that there is a fundamental identity which holds for SMD (and SGD) under very general conditions, and which implies the minimax optimality of SMD (and SGD) for sufficiently small step size, and for a general class of loss functions and general nonlinear models. We further show that this identity can be used to naturally establish other properties of SMD (and SGD), namely convergence and implicit regularization for over-parameterized linear models (in what is now being called the "interpolating regime"), some of which have been shown in certain cases in prior literature. We also argue how this identity can be used in the so-called "highly over-parameterized" nonlinear setting (where the number of parameters far exceeds the number of data points) to provide insights into why SMD (and SGD) may have similar convergence and implicit regularization properties for deep learning.

Abstract (translated)

URL

https://arxiv.org/abs/1806.00952

PDF

https://arxiv.org/pdf/1806.00952.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot