Paper Reading AI Learner

Cross-domain Federated Object Detection

2022-06-30 03:09:59
Shangchao Su, Bin Li, Chengzhi Zhang, Mingzhao Yang, Xiangyang Xue

Abstract

Detection models trained by one party (server) may face severe performance degradation when distributed to other users (clients). For example, in autonomous driving scenarios, different driving environments may bring obvious domain shifts, which lead to biases in model predictions. Federated learning that has emerged in recent years can enable multi-party collaborative training without leaking client data. In this paper, we focus on a special cross-domain scenario where the server contains large-scale data and multiple clients only contain a small amount of data; meanwhile, there exist differences in data distributions among the clients. In this case, traditional federated learning techniques cannot take into account the learning of both the global knowledge of all participants and the personalized knowledge of a specific client. To make up for this limitation, we propose a cross-domain federated object detection framework, named FedOD. In order to learn both the global knowledge and the personalized knowledge in different domains, the proposed framework first performs the federated training to obtain a public global aggregated model through multi-teacher distillation, and sends the aggregated model back to each client for finetuning its personalized local model. After very few rounds of communication, on each client we can perform weighted ensemble inference on the public global model and the personalized local model. With the ensemble, the generalization performance of the client-side model can outperform a single model with the same parameter scale. We establish a federated object detection dataset which has significant background differences and instance differences based on multiple public autonomous driving datasets, and then conduct extensive experiments on the dataset. The experimental results validate the effectiveness of the proposed method.

Abstract (translated)

URL

https://arxiv.org/abs/2206.14996

PDF

https://arxiv.org/pdf/2206.14996.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot