Paper Reading AI Learner

Assessing the Effects of Hyperparameters on Knowledge Graph Embedding Quality

2022-07-01 14:53:16
Oliver Lloyd, Yi Liu, Tom Gaunt

Abstract

Embedding knowledge graphs into low-dimensional spaces is a popular method for applying approaches, such as link prediction or node classification, to these databases. This embedding process is very costly in terms of both computational time and space. Part of the reason for this is the optimisation of hyperparameters, which involves repeatedly sampling, by random, guided, or brute-force selection, from a large hyperparameter space and testing the resulting embeddings for their quality. However, not all hyperparameters in this search space will be equally important. In fact, with prior knowledge of the relative importance of the hyperparameters, some could be eliminated from the search altogether without significantly impacting the overall quality of the outputted embeddings. To this end, we ran a Sobol sensitivity analysis to evaluate the effects of tuning different hyperparameters on the variance of embedding quality. This was achieved by performing thousands of embedding trials, each time measuring the quality of embeddings produced by different hyperparameter configurations. We regressed the embedding quality on those hyperparameter configurations, using this model to generate Sobol sensitivity indices for each of the hyperparameters. By evaluating the correlation between Sobol indices, we find substantial variability in the hyperparameter sensitivities between knowledge graphs with differing dataset characteristics as the probable cause of these inconsistencies. As an additional contribution of this work we identify several relations in the UMLS knowledge graph that may cause data leakage via inverse relations, and derive and present UMLS-43, a leakage-robust variant of that graph.

Abstract (translated)

URL

https://arxiv.org/abs/2207.00473

PDF

https://arxiv.org/pdf/2207.00473.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot