Paper Reading AI Learner

Approximating Discontinuous Nash Equilibrial Values of Two-Player General-Sum Differential Games

2022-07-05 02:22:05
Lei Zhang, Mukesh Ghimire, Wenlong Zhang, Zhe Xu, Yi Ren

Abstract

Finding Nash equilibrial policies for two-player differential games requires solving Hamilton-Jacobi-Isaacs PDEs. Recent studies achieved success in circumventing the curse of dimensionality in solving such PDEs with underlying applications to human-robot interactions (HRI), by adopting self-supervised (physics-informed) neural networks as universal value approximators. This paper extends from previous SOTA on zero-sum games with continuous values to general-sum games with discontinuous values, where the discontinuity is caused by that of the players' losses. We show that due to its lack of convergence proof and generalization analysis on discontinuous losses, the existing self-supervised learning technique fails to generalize and raises safety concerns in an autonomous driving application. Our solution is to first pre-train the value network on supervised Nash equilibria, and then refine it by minimizing a loss that combines the supervised data with the PDE and boundary conditions. Importantly, the demonstrated advantage of the proposed learning method against purely supervised and self-supervised approaches requires careful choice of the neural activation function: Among $\texttt{relu}$, $\texttt{sin}$, and $\texttt{tanh}$, we show that $\texttt{tanh}$ is the only choice that achieves optimal generalization and safety performance. Our conjecture is that $\texttt{tanh}$ (similar to $\texttt{sin}$) allows continuity of value and its gradient, which is sufficient for the convergence of learning, and at the same time is expressive enough (similar to $\texttt{relu}$) at approximating discontinuous value landscapes. Lastly, we apply our method to approximating control policies for an incomplete-information interaction and demonstrate its contribution to safe interactions.

Abstract (translated)

URL

https://arxiv.org/abs/2207.01773

PDF

https://arxiv.org/pdf/2207.01773.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot