Paper Reading AI Learner

Clustered Saliency Prediction

2022-07-05 17:59:37
Rezvan Sherkati, James J. Clark

Abstract

We present a new method for image salience prediction, Clustered Saliency Prediction. This method divides individuals into clusters based on their personal features and their known saliency maps, and generates a separate image salience model for each cluster. We test our approach on a public dataset of personalized saliency maps, with varying importance weights for personal feature factors and observe the effects on the clusters. For each cluster, we use an image-to-image translation method, mainly Pix2Pix model, to convert universal saliency maps to saliency maps of that cluster. We try three state-of-the-art universal saliency prediction methods, DeepGaze II, ML-Net and SalGAN, and see their impact on the results. We show that our Clustered Saliency Prediction technique outperforms the state-of-the-art universal saliency prediction models. Also we demonstrate the effectiveness of our clustering method by comparing the results of Clustered Saliency Prediction using clusters obtained by Subject Similarity Clustering algorithm with two baseline methods. We propose an approach to assign new people to the most appropriate cluster, based on their personal features and any known saliency maps. In our experiments we see that this method of assigning new people to a cluster on average chooses the cluster that gives higher saliency scores.

Abstract (translated)

URL

https://arxiv.org/abs/2207.02205

PDF

https://arxiv.org/pdf/2207.02205.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot