Paper Reading AI Learner

Jointly Harnessing Prior Structures and Temporal Consistency for Sign Language Video Generation

2022-07-08 07:10:28
Yucheng Suo, Zhedong Zheng, Xiaohan Wang, Bang Zhang, Yi Yang

Abstract

Sign language is the window for people differently-abled to express their feelings as well as emotions. However, it remains challenging for people to learn sign language in a short time. To address this real-world challenge, in this work, we study the motion transfer system, which can transfer the user photo to the sign language video of specific words. In particular, the appearance content of the output video comes from the provided user image, while the motion of the video is extracted from the specified tutorial video. We observe two primary limitations in adopting the state-of-the-art motion transfer methods to sign language generation:(1) Existing motion transfer works ignore the prior geometrical knowledge of the human body. (2) The previous image animation methods only take image pairs as input in the training stage, which could not fully exploit the temporal information within videos. In an attempt to address the above-mentioned limitations, we propose Structure-aware Temporal Consistency Network (STCNet) to jointly optimize the prior structure of human with the temporal consistency for sign language video generation. There are two main contributions in this paper. (1) We harness a fine-grained skeleton detector to provide prior knowledge of the body keypoints. In this way, we ensure the keypoint movement in a valid range and make the model become more explainable and robust. (2) We introduce two cycle-consistency losses, i.e., short-term cycle loss and long-term cycle loss, which are conducted to assure the continuity of the generated video. We optimize the two losses and keypoint detector network in an end-to-end manner.

Abstract (translated)

URL

https://arxiv.org/abs/2207.03714

PDF

https://arxiv.org/pdf/2207.03714.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot