Paper Reading AI Learner

Increased Complexity of a Human-Robot Collaborative Task May Increase the Need for a Socially Competent Robot

2022-07-11 11:43:27
Rebeka Kropivšek Leskovar, Tadej Petrič

Abstract

An important factor in developing control models for human-robot collaboration is how acceptable they are to their human partners. One such method for creating acceptable control models is to attempt to mimic human-like behaviour in robots so that their actions appear more intuitive to humans. To investigate how task complexity affects human perception and acceptance of their robot partner, we propose a novel human-based robot control model for obstacle avoidance that can account for the leader-follower dynamics that normally occur in human collaboration. The performance and acceptance of the proposed control method were evaluated using an obstacle avoidance scenario in which we compared task performance between individual tasks and collaborative tasks with different leader-follower dynamics roles for the robotic partner. The evaluation results showed that the robot control method is able to replicate human behaviour to improve the overall task performance of the subject in collaboration. However, regarding the acceptance of the robotic partner, the participants' opinions were mixed. Compared to the results of a study with a similar control method developed for a less complex task, the new results show a lower acceptance of the proposed control model, even though the control method was adapted to the more complex task from a dynamic standpoint. This suggests that the complexity of the collaborative task at hand increases the need not only for a more complex control model but also a more socially competent control model.

Abstract (translated)

URL

https://arxiv.org/abs/2207.04792

PDF

https://arxiv.org/pdf/2207.04792.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot