Paper Reading AI Learner

Overview of Abusive and Threatening Language Detection in Urdu at FIRE 2021

2022-07-14 07:38:13
Maaz Amjad, Alisa Zhila, Grigori Sidorov, Andrey Labunets, Sabur Butta, Hamza Imam Amjad, Oxana Vitman, Alexander Gelbukh

Abstract

With the growth of social media platform influence, the effect of their misuse becomes more and more impactful. The importance of automatic detection of threatening and abusive language can not be overestimated. However, most of the existing studies and state-of-the-art methods focus on English as the target language, with limited work on low- and medium-resource languages. In this paper, we present two shared tasks of abusive and threatening language detection for the Urdu language which has more than 170 million speakers worldwide. Both are posed as binary classification tasks where participating systems are required to classify tweets in Urdu into two classes, namely: (i) Abusive and Non-Abusive for the first task, and (ii) Threatening and Non-Threatening for the second. We present two manually annotated datasets containing tweets labelled as (i) Abusive and Non-Abusive, and (ii) Threatening and Non-Threatening. The abusive dataset contains 2400 annotated tweets in the train part and 1100 annotated tweets in the test part. The threatening dataset contains 6000 annotated tweets in the train part and 3950 annotated tweets in the test part. We also provide logistic regression and BERT-based baseline classifiers for both tasks. In this shared task, 21 teams from six countries registered for participation (India, Pakistan, China, Malaysia, United Arab Emirates, and Taiwan), 10 teams submitted their runs for Subtask A, which is Abusive Language Detection and 9 teams submitted their runs for Subtask B, which is Threatening Language detection, and seven teams submitted their technical reports. The best performing system achieved an F1-score value of 0.880 for Subtask A and 0.545 for Subtask B. For both subtasks, m-Bert based transformer model showed the best performance.

Abstract (translated)

URL

https://arxiv.org/abs/2207.06710

PDF

https://arxiv.org/pdf/2207.06710.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot