Paper Reading AI Learner

VICTOR: Visual Incompatibility Detection with Transformers and Fashion-specific contrastive pre-training

2022-07-27 11:18:55
Stefanos-Iordanis Papadopoulos, Christos Koutlis, Symeon Papadopoulos, Ioannis Kompatsiaris

Abstract

In order to consider fashion outfits as aesthetically pleasing, the garments that constitute them need to be compatible in terms of visual aspects, such as style, category and color. With the advent and omnipresence of computer vision deep learning models, increased interest has also emerged for the task of visual compatibility detection with the aim to develop quality fashion outfit recommendation systems. Previous works have defined visual compatibility as a binary classification task with items in a garment being considered as fully compatible or fully incompatible. However, this is not applicable to Outfit Maker applications where users create their own outfits and need to know which specific items may be incompatible with the rest of the outfit. To address this, we propose the Visual InCompatibility TransfORmer (VICTOR) that is optimized for two tasks: 1) overall compatibility as regression and 2) the detection of mismatching items. Unlike previous works that either rely on feature extraction from ImageNet-pretrained models or by end-to-end fine tuning, we utilize fashion-specific contrastive language-image pre-training for fine tuning computer vision neural networks on fashion imagery. Moreover, we build upon the Polyvore outfit benchmark to generate partially mismatching outfits, creating a new dataset termed Polyvore-MISFITs, that is used to train VICTOR. A series of ablation and comparative analyses show that the proposed architecture can compete and even surpass the current state-of-the-art on Polyvore datasets while reducing the instance-wise floating operations by 88%, striking a balance between high performance and efficiency.

Abstract (translated)

URL

https://arxiv.org/abs/2207.13458

PDF

https://arxiv.org/pdf/2207.13458.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot