Paper Reading AI Learner

Global Attention-based Encoder-Decoder LSTM Model for Temperature Prediction of Permanent Magnet Synchronous Motors

2022-07-30 18:59:57
Jun Li, Thangarajah Akilan

Abstract

Temperature monitoring is critical for electrical motors to determine if device protection measures should be executed. However, the complexity of the internal structure of Permanent Magnet Synchronous Motors (PMSM) makes the direct temperature measurement of the internal components difficult. This work pragmatically develops three deep learning models to estimate the PMSMs' internal temperature based on readily measurable external quantities. The proposed supervised learning models exploit Long Short-Term Memory (LSTM) modules, bidirectional LSTM, and attention mechanism to form encoder-decoder structures to predict simultaneously the temperatures of the stator winding, tooth, yoke, and permanent magnet. Experiments were conducted in an exhaustive manner on a benchmark dataset to verify the proposed models' performances. The comparative analysis shows that the proposed global attention-based encoder-decoder (EnDec) model provides a competitive overall performance of 1.72 Mean Squared Error (MSE) and 5.34 Mean Absolute Error (MAE).

Abstract (translated)

URL

https://arxiv.org/abs/2208.00293

PDF

https://arxiv.org/pdf/2208.00293.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot