Paper Reading AI Learner

GaitGL: Learning Discriminative Global-Local Feature Representations for Gait Recognition

2022-08-02 11:50:21
Beibei Lin, Shunli Zhang, Ming Wang, Lincheng Li, Xin Yu

Abstract

Existing gait recognition methods either directly establish Global Feature Representation (GFR) from original gait sequences or generate Local Feature Representation (LFR) from several local parts. However, GFR tends to neglect local details of human postures as the receptive fields become larger in the deeper network layers. Although LFR allows the network to focus on the detailed posture information of each local region, it neglects the relations among different local parts and thus only exploits limited local information of several specific regions. To solve these issues, we propose a global-local based gait recognition network, named GaitGL, to generate more discriminative feature representations. To be specific, a novel Global and Local Convolutional Layer (GLCL) is developed to take full advantage of both global visual information and local region details in each layer. GLCL is a dual-branch structure that consists of a GFR extractor and a mask-based LFR extractor. GFR extractor aims to extract contextual information, e.g., the relationship among various body parts, and the mask-based LFR extractor is presented to exploit the detailed posture changes of local regions. In addition, we introduce a novel mask-based strategy to improve the local feature extraction capability. Specifically, we design pairs of complementary masks to randomly occlude feature maps, and then train our mask-based LFR extractor on various occluded feature maps. In this manner, the LFR extractor will learn to fully exploit local information. Extensive experiments demonstrate that GaitGL achieves better performance than state-of-the-art gait recognition methods. The average rank-1 accuracy on CASIA-B, OU-MVLP, GREW and Gait3D is 93.6%, 98.7%, 68.0% and 63.8%, respectively, significantly outperforming the competing methods. The proposed method has won the first prize in two competitions: HID 2020 and HID 2021.

Abstract (translated)

URL

https://arxiv.org/abs/2208.01380

PDF

https://arxiv.org/pdf/2208.01380.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot