Paper Reading AI Learner

Understanding the QuickXPlain Algorithm: Simple Explanation and Formal Proof

2022-08-04 15:39:00
Patrick Rodler

Abstract

In his seminal paper of 2004, Ulrich Junker proposed the QuickXPlain algorithm, which provides a divide-and-conquer computation strategy to find within a given set an irreducible subset with a particular (monotone) property. Beside its original application in the domain of constraint satisfaction problems, the algorithm has since then found widespread adoption in areas as different as model-based diagnosis, recommender systems, verification, or the Semantic Web. This popularity is due to the frequent occurrence of the problem of finding irreducible subsets on the one hand, and to QuickXPlain's general applicability and favorable computational complexity on the other hand. However, although (we regularly experience) people are having a hard time understanding QuickXPlain and seeing why it works correctly, a proof of correctness of the algorithm has never been published. This is what we account for in this work, by explaining QuickXPlain in a novel tried and tested way and by presenting an intelligible formal proof of it. Apart from showing the correctness of the algorithm and excluding the later detection of errors (proof and trust effect), the added value of the availability of a formal proof is, e.g., (i) that the workings of the algorithm often become completely clear only after studying, verifying and comprehending the proof (didactic effect), (ii) the shown proof methodology can be used as a guidance for proving other recursive algorithms (transfer effect), and (iii) the possibility of providing "gapless" correctness proofs of systems that rely on (results computed by) QuickXPlain, such as numerous model-based debuggers (completeness effect).

Abstract (translated)

URL

https://arxiv.org/abs/2001.01835

PDF

https://arxiv.org/pdf/2001.01835.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot