Paper Reading AI Learner

Fusing Sentence Embeddings Into LSTM-based Autoregressive Language Models

2022-08-04 02:13:03
Vilém Zouhar, Marius Mosbach, Dietrich Klakow

Abstract

Although masked language models are highly performant and widely adopted by NLP practitioners, they can not be easily used for autoregressive language modelling (next word prediction and sequence probability estimation). We present an LSTM-based autoregressive language model which uses prefix embeddings (from a pretrained masked language model) via fusion (e.g. concatenation) to obtain a richer context representation for language modelling. We find that fusion helps reliably in lowering the perplexity (16.74 $\rightarrow$ 15.80), which is even preserved after a transfer to a dataset from a different domain than the training data. We also evaluate the best-performing fusion model by correlating its next word surprisal estimates with human reading times. Contradicting our expectation, and despite the improvement in perplexity overall, the correlation remains the same as for the baseline model. Lastly, while we focus on language models pre-trained on text as the sources for the fusion, our approach can be possibly extended to fuse any information represented as a fixed-size vector into an auto-regressive language model. These include e.g. sentence external information retrieved for a knowledge base or representations of multi-modal encoders.

Abstract (translated)

URL

https://arxiv.org/abs/2208.02402

PDF

https://arxiv.org/pdf/2208.02402.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot