Paper Reading AI Learner

Depth Quality-Inspired Feature Manipulation for Efficient RGB-D and Video Salient Object Detection

2022-08-08 05:21:41
Wenbo Zhang, Keren Fu, Zhuo Wang, Ge-Peng Ji, Qijun Zhao

Abstract

Recently CNN-based RGB-D salient object detection (SOD) has obtained significant improvement on detection accuracy. However, existing models often fail to perform well in terms of efficiency and accuracy simultaneously. This hinders their potential applications on mobile devices as well as many real-world problems. To bridge the accuracy gap between lightweight and large models for RGB-D SOD, in this paper, an efficient module that can greatly improve the accuracy but adds little computation is proposed. Inspired by the fact that depth quality is a key factor influencing the accuracy, we propose an efficient depth quality-inspired feature manipulation (DQFM) process, which can dynamically filter depth features according to depth quality. The proposed DQFM resorts to the alignment of low-level RGB and depth features, as well as holistic attention of the depth stream to explicitly control and enhance cross-modal fusion. We embed DQFM to obtain an efficient lightweight RGB-D SOD model called DFM-Net, where we in addition design a tailored depth backbone and a two-stage decoder as basic parts. Extensive experimental results on nine RGB-D datasets demonstrate that our DFM-Net outperforms recent efficient models, running at about 20 FPS on CPU with only 8.5Mb model size, and meanwhile being 2.9/2.4 times faster and 6.7/3.1 times smaller than the latest best models A2dele and MobileSal. It also maintains state-of-the-art accuracy when even compared to non-efficient models. Interestingly, further statistics and analyses verify the ability of DQFM in distinguishing depth maps of various qualities without any quality labels. Last but not least, we further apply DFM-Net to deal with video SOD (VSOD), achieving comparable performance against recent efficient models while being 3/2.3 times faster/smaller than the prior best in this field. Our code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2208.03918

PDF

https://arxiv.org/pdf/2208.03918.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot