Paper Reading AI Learner

Embedding Compression with Hashing for Efficient Representation Learning in Large-Scale Graph

2022-08-11 05:43:39
Chin-Chia Michael Yeh, Mengting Gu, Yan Zheng, Huiyuan Chen, Javid Ebrahimi, Zhongfang Zhuang, Junpeng Wang, Liang Wang, Wei Zhang

Abstract

Graph neural networks (GNNs) are deep learning models designed specifically for graph data, and they typically rely on node features as the input to the first layer. When applying such a type of network on the graph without node features, one can extract simple graph-based node features (e.g., number of degrees) or learn the input node representations (i.e., embeddings) when training the network. While the latter approach, which trains node embeddings, more likely leads to better performance, the number of parameters associated with the embeddings grows linearly with the number of nodes. It is therefore impractical to train the input node embeddings together with GNNs within graphics processing unit (GPU) memory in an end-to-end fashion when dealing with industrial-scale graph data. Inspired by the embedding compression methods developed for natural language processing (NLP) tasks, we develop a node embedding compression method where each node is compactly represented with a bit vector instead of a floating-point vector. The parameters utilized in the compression method can be trained together with GNNs. We show that the proposed node embedding compression method achieves superior performance compared to the alternatives.

Abstract (translated)

URL

https://arxiv.org/abs/2208.05648

PDF

https://arxiv.org/pdf/2208.05648.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot