Paper Reading AI Learner

ROLAND: Graph Learning Framework for Dynamic Graphs

2022-08-15 14:51:47
Jiaxuan You, Tianyu Du, Jure Leskovec

Abstract

Graph Neural Networks (GNNs) have been successfully applied to many real-world static graphs. However, the success of static graphs has not fully translated to dynamic graphs due to the limitations in model design, evaluation settings, and training strategies. Concretely, existing dynamic GNNs do not incorporate state-of-the-art designs from static GNNs, which limits their performance. Current evaluation settings for dynamic GNNs do not fully reflect the evolving nature of dynamic graphs. Finally, commonly used training methods for dynamic GNNs are not scalable. Here we propose ROLAND, an effective graph representation learning framework for real-world dynamic graphs. At its core, the ROLAND framework can help researchers easily repurpose any static GNN to dynamic graphs. Our insight is to view the node embeddings at different GNN layers as hierarchical node states and then recurrently update them over time. We then introduce a live-update evaluation setting for dynamic graphs that mimics real-world use cases, where GNNs are making predictions and being updated on a rolling basis. Finally, we propose a scalable and efficient training approach for dynamic GNNs via incremental training and meta-learning. We conduct experiments over eight different dynamic graph datasets on future link prediction tasks. Models built using the ROLAND framework achieve on average 62.7% relative mean reciprocal rank (MRR) improvement over state-of-the-art baselines under the standard evaluation settings on three datasets. We find state-of-the-art baselines experience out-of-memory errors for larger datasets, while ROLAND can easily scale to dynamic graphs with 56 million edges. After re-implementing these baselines using the ROLAND training strategy, ROLAND models still achieve on average 15.5% relative MRR improvement over the baselines.

Abstract (translated)

URL

https://arxiv.org/abs/2208.07239

PDF

https://arxiv.org/pdf/2208.07239.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot