Paper Reading AI Learner

C3-DINO: Joint Contrastive and Non-contrastive Self-Supervised Learning for Speaker Verification

2022-08-15 21:52:02
Chunlei Zhang, Dong Yu

Abstract

Self-supervised learning (SSL) has drawn an increased attention in the field of speech processing. Recent studies have demonstrated that contrastive learning is able to learn discriminative speaker embeddings in a self-supervised manner. However, base contrastive self-supervised learning (CSSL) assumes that the pairs generated from a view of anchor instance and any view of other instances are all negative, which introduces many false negative pairs in constructing the loss function. The problem is referred as $class$-$collision$, which remains as one major issue that impedes the CSSL based speaker verification (SV) systems from achieving better performances. In the meanwhile, studies reveal that negative sample free SSL frameworks perform well in learning speaker or image representations. In this study, we investigate SSL techniques that lead to an improved SV performance. We first analyse the impact of false negative pairs in the CSSL systems. Then, a multi-stage Class-Collision Correction (C3) method is proposed, which leads to the state-of-the-art CSSL based speaker embedding system. On the basis of the pretrained CSSL model, we further propose to employ a negative sample free SSL objective (i.e., DINO) to fine-tune the speaker embedding network. The resulting speaker embedding system (C3-DINO) achieves 2.5% EER with a simple Cosine Distance Scoring method on Voxceleb1 test set, which outperforms the previous SOTA SSL system (4.86%) by a significant +45% relative improvement. With speaker clustering and pseudo labeling on Voxceleb2 training set, a LDA/CDS back-end applying on the C3-DINO speaker embeddings is able to further push the EER to 2.2%. Comprehensive experimental investigations of the Voxceleb benchmarks and our internal dataset demonstrate the effectiveness of our proposed methods, and the performance gap between the SSL SV and the supervised counterpart narrows further.

Abstract (translated)

URL

https://arxiv.org/abs/2208.07446

PDF

https://arxiv.org/pdf/2208.07446.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot