Paper Reading AI Learner

Metal artifact correction in cone beam computed tomography using synthetic X-ray data

2022-08-17 13:31:38
Harshit Agrawal, Ari Hietanen, Simo Särkkä

Abstract

Metal artifact correction is a challenging problem in cone beam computed tomography (CBCT) scanning. Metal implants inserted into the anatomy cause severe artifacts in reconstructed images. Widely used inpainting-based metal artifact reduction (MAR) methods require segmentation of metal traces in the projections as a first step which is a challenging task. One approach is to use a deep learning method to segment metals in the projections. However, the success of deep learning methods is limited by the availability of realistic training data. It is challenging and time consuming to get reliable ground truth annotations due to unclear implant boundary and large number of projections. We propose to use X-ray simulations to generate synthetic metal segmentation training dataset from clinical CBCT scans. We compare the effect of simulations with different number of photons and also compare several training strategies to augment the available data. We compare our model's performance on real clinical scans with conventional threshold-based MAR and a recent deep learning method. We show that simulations with relatively small number of photons are suitable for the metal segmentation task and that training the deep learning model with full size and cropped projections together improves the robustness of the model. We show substantial improvement in the image quality affected by severe motion, voxel size under-sampling, and out-of-FOV metals. Our method can be easily implemented into the existing projection-based MAR pipeline to get improved image quality. This method can provide a novel paradigm to accurately segment metals in CBCT projections.

Abstract (translated)

URL

https://arxiv.org/abs/2208.08288

PDF

https://arxiv.org/pdf/2208.08288.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot