Paper Reading AI Learner

A Multi-Modal Wildfire Prediction and Personalized Early-Warning System Based on a Novel Machine Learning Framework

2022-08-18 22:03:32
Rohan Tan Bhowmik

Abstract

Wildfires are increasingly impacting the environment, human health and safety. Among the top 20 California wildfires, those in 2020-2021 burned more acres than the last century combined. California's 2018 wildfire season caused damages of $148.5 billion. Among millions of impacted people, those living with disabilities (around 15% of the world population) are disproportionately impacted due to inadequate means of alerts. In this project, a multi-modal wildfire prediction and personalized early warning system has been developed based on an advanced machine learning architecture. Sensor data from the Environmental Protection Agency and historical wildfire data from 2012 to 2018 have been compiled to establish a comprehensive wildfire database, the largest of its kind. Next, a novel U-Convolutional-LSTM (Long Short-Term Memory) neural network was designed with a special architecture for extracting key spatial and temporal features from contiguous environmental parameters indicative of impending wildfires. Environmental and meteorological factors were incorporated into the database and classified as leading indicators and trailing indicators, correlated to risks of wildfire conception and propagation respectively. Additionally, geological data was used to provide better wildfire risk assessment. This novel spatio-temporal neural network achieved >97% accuracy vs. around 76% using traditional convolutional neural networks, successfully predicting 2018's five most devastating wildfires 5-14 days in advance. Finally, a personalized early warning system, tailored to individuals with sensory disabilities or respiratory exacerbation conditions, was proposed. This technique would enable fire departments to anticipate and prevent wildfires before they strike and provide early warnings for at-risk individuals for better preparation, thereby saving lives and reducing economic damages.

Abstract (translated)

URL

https://arxiv.org/abs/2208.09079

PDF

https://arxiv.org/pdf/2208.09079.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot