Paper Reading AI Learner

Performance, Opaqueness, Consequences, and Assumptions: Simple questions for responsible planning of machine learning solutions

2022-08-21 21:24:42
Przemyslaw Biecek

Abstract

The data revolution has generated a huge demand for data-driven solutions. This demand propels a growing number of easy-to-use tools and training for aspiring data scientists that enable the rapid building of predictive models. Today, weapons of math destruction can be easily built and deployed without detailed planning and validation. This rapidly extends the list of AI failures, i.e. deployments that lead to financial losses or even violate democratic values such as equality, freedom and justice. The lack of planning, rules and standards around the model development leads to the ,,anarchisation of AI". This problem is reported under different names such as validation debt, reproducibility crisis, and lack of explainability. Post-mortem analysis of AI failures often reveals mistakes made in the early phase of model development or data acquisition. Thus, instead of curing the consequences of deploying harmful models, we shall prevent them as early as possible by putting more attention to the initial planning stage. In this paper, we propose a quick and simple framework to support planning of AI solutions. The POCA framework is based on four pillars: Performance, Opaqueness, Consequences, and Assumptions. It helps to set the expectations and plan the constraints for the AI solution before any model is built and any data is collected. With the help of the POCA method, preliminary requirements can be defined for the model-building process, so that costly model misspecification errors can be identified as soon as possible or even avoided. AI researchers, product owners and business analysts can use this framework in the initial stages of building AI solutions.

Abstract (translated)

URL

https://arxiv.org/abs/2208.09966

PDF

https://arxiv.org/pdf/2208.09966.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot