Paper Reading AI Learner

Multimodal Crop Type Classification Fusing Multi-Spectral Satellite Time Series with Farmers Crop Rotations and Local Crop Distribution

2022-08-23 09:41:09
Valentin Barriere, Martin Claverie

Abstract

Accurate, detailed, and timely crop type mapping is a very valuable information for the institutions in order to create more accurate policies according to the needs of the citizens. In the last decade, the amount of available data dramatically increased, whether it can come from Remote Sensing (using Copernicus Sentinel-2 data) or directly from the farmers (providing in-situ crop information throughout the years and information on crop rotation). Nevertheless, the majority of the studies are restricted to the use of one modality (Remote Sensing data or crop rotation) and never fuse the Earth Observation data with domain knowledge like crop rotations. Moreover, when they use Earth Observation data they are mainly restrained to one year of data, not taking into account the past years. In this context, we propose to tackle a land use and crop type classification task using three data types, by using a Hierarchical Deep Learning algorithm modeling the crop rotations like a language model, the satellite signals like a speech signal and using the crop distribution as additional context vector. We obtained very promising results compared to classical approaches with significant performances, increasing the Accuracy by 5.1 points in a 28-class setting (.948), and the micro-F1 by 9.6 points in a 10-class setting (.887) using only a set of crop of interests selected by an expert. We finally proposed a data-augmentation technique to allow the model to classify the crop before the end of the season, which works surprisingly well in a multimodal setting.

Abstract (translated)

URL

https://arxiv.org/abs/2208.10838

PDF

https://arxiv.org/pdf/2208.10838.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot