Paper Reading AI Learner

Digital Audio Tampering Detection Based on ENF Spatio-temporal Features Representation Learning

2022-08-25 08:01:02
Chunyan Zeng, Shuai Kong, Zhifeng Wang, Xiangkui Wan, Yunfan Chen

Abstract

Most digital audio tampering detection methods based on electrical network frequency (ENF) only utilize the static spatial information of ENF, ignoring the variation of ENF in time series, which limit the ability of ENF feature representation and reduce the accuracy of tampering detection. This paper proposes a new method for digital audio tampering detection based on ENF spatio-temporal features representation learning. A parallel spatio-temporal network model is constructed using CNN and BiLSTM, which deeply extracts ENF spatial feature information and ENF temporal feature information to enhance the feature representation capability to improve the tampering detection accuracy. In order to extract the spatial and temporal features of the ENF, this paper firstly uses digital audio high-precision Discrete Fourier Transform analysis to extract the phase sequences of the ENF. The unequal phase series is divided into frames by adaptive frame shifting to obtain feature matrices of the same size to represent the spatial features of the ENF. At the same time, the phase sequences are divided into frames based on ENF time changes information to represent the temporal features of the ENF. Then deep spatial and temporal features are further extracted using CNN and BiLSTM respectively, and an attention mechanism is used to adaptively assign weights to the deep spatial and temporal features to obtain spatio-temporal features with stronger representation capability. Finally, the deep neural network is used to determine whether the audio has been tampered with. The experimental results show that the proposed method improves the accuracy by 2.12%-7.12% compared with state-of-the-art methods under the public database Carioca, New Spanish.

Abstract (translated)

URL

https://arxiv.org/abs/2208.11920

PDF

https://arxiv.org/pdf/2208.11920.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot