Paper Reading AI Learner

Automatic detection of faults in race walking from a smartphone camera: a comparison of an Olympic medalist and university athletes

2022-08-24 07:04:36
Tomohiro Suzuki, Kazuya Takeda, Keisuke Fujii

Abstract

Automatic fault detection is a major challenge in many sports. In race walking, referees visually judge faults according to the rules. Hence, ensuring objectivity and fairness while judging is important. To address this issue, some studies have attempted to use sensors and machine learning to automatically detect faults. However, there are problems associated with sensor attachments and equipment such as a high-speed camera, which conflict with the visual judgement of referees, and the interpretability of the fault detection models. In this study, we proposed a fault detection system for non-contact measurement. We used pose estimation and machine learning models trained based on the judgements of multiple qualified referees to realize fair fault judgement. We verified them using smartphone videos of normal race walking and walking with intentional faults in several athletes including the medalist of the Tokyo Olympics. The validation results show that the proposed system detected faults with an average accuracy of over 90%. We also revealed that the machine learning model detects faults according to the rules of race walking. In addition, the intentional faulty walking movement of the medalist was different from that of university walkers. This finding informs realization of a more general fault detection model. The code and data are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2208.12646

PDF

https://arxiv.org/pdf/2208.12646.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot