Paper Reading AI Learner

Affective Manifolds: Modeling Machine's Mind to Like, Dislike, Enjoy, Suffer, Worry, Fear, and Feel Like A Human

2022-08-29 06:30:52
Benyamin Ghojogh

Abstract

After the development of different machine learning and manifold learning algorithms, it may be a good time to put them together to make a powerful mind for machine. In this work, we propose affective manifolds as components of a machine's mind. Every affective manifold models a characteristic group of mind and contains multiple states. We define the machine's mind as a set of affective manifolds. We use a learning model for mapping the input signals to the embedding space of affective manifold. Using this mapping, a machine or a robot takes an input signal and can react emotionally to it. We use deep metric learning, with Siamese network, and propose a loss function for affective manifold learning. We define margins between states based on the psychological and philosophical studies. Using triplets of instances, we train the network to minimize the variance of every state and have the desired distances between states. We show that affective manifolds can have various applications for machine-machine and human-machine interactions. Some simulations are also provided for verification of the proposed method. It is possible to have as many affective manifolds as required in machine's mind. More affective manifolds in the machine's mind can make it more realistic and effective. This paper opens the door; we invite the researchers from various fields of science to propose more affective manifolds to be inserted in machine's mind.

Abstract (translated)

URL

https://arxiv.org/abs/2208.13386

PDF

https://arxiv.org/pdf/2208.13386.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot