Paper Reading AI Learner

Accelerating Deep Unrolling Networks via Dimensionality Reduction

2022-08-31 11:45:21
Junqi Tang, Subhadip Mukherjee, Carola-Bibiane Schönlieb

Abstract

In this work we propose a new paradigm for designing efficient deep unrolling networks using dimensionality reduction schemes, including minibatch gradient approximation and operator sketching. The deep unrolling networks are currently the state-of-the-art solutions for imaging inverse problems. However, for high-dimensional imaging tasks, especially X-ray CT and MRI imaging, the deep unrolling schemes typically become inefficient both in terms of memory and computation, due to the need of computing multiple times the high-dimensional forward and adjoint operators. Recently researchers have found that such limitations can be partially addressed by unrolling the stochastic gradient descent (SGD), inspired by the success of stochastic first-order optimization. In this work, we explore further this direction and propose first a more expressive and practical stochastic primal-dual unrolling, based on the state-of-the-art Learned Primal-Dual (LPD) network, and also a further acceleration upon stochastic primal-dual unrolling, using sketching techniques to approximate products in the high-dimensional image space. The operator sketching can be jointly applied with stochastic unrolling for the best acceleration and compression performance. Our numerical experiments on X-ray CT image reconstruction demonstrate the remarkable effectiveness of our accelerated unrolling schemes.

Abstract (translated)

URL

https://arxiv.org/abs/2208.14784

PDF

https://arxiv.org/pdf/2208.14784.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot