Paper Reading AI Learner

SwiftPruner: Reinforced Evolutionary Pruning for Efficient Ad Relevance

2022-08-30 03:05:56
Li Lyna Zhang, Youkow Homma, Yujing Wang, Min Wu, Mao Yang, Ruofei Zhang, Ting Cao, Wei Shen

Abstract

Ad relevance modeling plays a critical role in online advertising systems including Microsoft Bing. To leverage powerful transformers like BERT in this low-latency setting, many existing approaches perform ad-side computations offline. While efficient, these approaches are unable to serve cold start ads, resulting in poor relevance predictions for such ads. This work aims to design a new, low-latency BERT via structured pruning to empower real-time online inference for cold start ads relevance on a CPU platform. Our challenge is that previous methods typically prune all layers of the transformer to a high, uniform sparsity, thereby producing models which cannot achieve satisfactory inference speed with an acceptable accuracy. In this paper, we propose SwiftPruner - an efficient framework that leverages evolution-based search to automatically find the best-performing layer-wise sparse BERT model under the desired latency constraint. Different from existing evolution algorithms that conduct random mutations, we propose a reinforced mutator with a latency-aware multi-objective reward to conduct better mutations for efficiently searching the large space of layer-wise sparse models. Extensive experiments demonstrate that our method consistently achieves higher ROC AUC and lower latency than the uniform sparse baseline and state-of-the-art search methods. Remarkably, under our latency requirement of 1900us on CPU, SwiftPruner achieves a 0.86% higher AUC than the state-of-the-art uniform sparse baseline for BERT-Mini on a large scale real-world dataset. Online A/B testing shows that our model also achieves a significant 11.7% cut in the ratio of defective cold start ads with satisfactory real-time serving latency.

Abstract (translated)

URL

https://arxiv.org/abs/2209.00625

PDF

https://arxiv.org/pdf/2209.00625.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot