Paper Reading AI Learner

Delving into the Frequency: Temporally Consistent Human Motion Transfer in the Fourier Space

2022-09-01 05:30:23
Guang Yang, Wu Liu, Xinchen Liu, Xiaoyan Gu, Juan Cao, Jintao Li

Abstract

Human motion transfer refers to synthesizing photo-realistic and temporally coherent videos that enable one person to imitate the motion of others. However, current synthetic videos suffer from the temporal inconsistency in sequential frames that significantly degrades the video quality, yet is far from solved by existing methods in the pixel domain. Recently, some works on DeepFake detection try to distinguish the natural and synthetic images in the frequency domain because of the frequency insufficiency of image synthesizing methods. Nonetheless, there is no work to study the temporal inconsistency of synthetic videos from the aspects of the frequency-domain gap between natural and synthetic videos. In this paper, we propose to delve into the frequency space for temporally consistent human motion transfer. First of all, we make the first comprehensive analysis of natural and synthetic videos in the frequency domain to reveal the frequency gap in both the spatial dimension of individual frames and the temporal dimension of the video. To close the frequency gap between the natural and synthetic videos, we propose a novel Frequency-based human MOtion TRansfer framework, named FreMOTR, which can effectively mitigate the spatial artifacts and the temporal inconsistency of the synthesized videos. FreMOTR explores two novel frequency-based regularization modules: 1) the Frequency-domain Appearance Regularization (FAR) to improve the appearance of the person in individual frames and 2) Temporal Frequency Regularization (TFR) to guarantee the temporal consistency between adjacent frames. Finally, comprehensive experiments demonstrate that the FreMOTR not only yields superior performance in temporal consistency metrics but also improves the frame-level visual quality of synthetic videos. In particular, the temporal consistency metrics are improved by nearly 30% than the state-of-the-art model.

Abstract (translated)

URL

https://arxiv.org/abs/2209.00233

PDF

https://arxiv.org/pdf/2209.00233.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot