Paper Reading AI Learner

Object-based active inference

2022-09-02 20:08:43
Ruben S. van Bergen, Pablo L. Lanillos

Abstract

The world consists of objects: distinct entities possessing independent properties and dynamics. For agents to interact with the world intelligently, they must translate sensory inputs into the bound-together features that describe each object. These object-based representations form a natural basis for planning behavior. Active inference (AIF) is an influential unifying account of perception and action, but existing AIF models have not leveraged this important inductive bias. To remedy this, we introduce 'object-based active inference' (OBAI), marrying AIF with recent deep object-based neural networks. OBAI represents distinct objects with separate variational beliefs, and uses selective attention to route inputs to their corresponding object slots. Object representations are endowed with independent action-based dynamics. The dynamics and generative model are learned from experience with a simple environment (active multi-dSprites). We show that OBAI learns to correctly segment the action-perturbed objects from video input, and to manipulate these objects towards arbitrary goals.

Abstract (translated)

URL

https://arxiv.org/abs/2209.01258

PDF

https://arxiv.org/pdf/2209.01258.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot