Paper Reading AI Learner

Features Fusion Framework for Multimodal Irregular Time-series Events

2022-09-05 02:27:12
Peiwang Tang, Xianchao Zhang


Some data from multiple sources can be modeled as multimodal time-series events which have different sampling frequencies, data compositions, temporal relations and characteristics. Different types of events have complex nonlinear relationships, and the time of each event is irregular. Neither the classical Recurrent Neural Network (RNN) model nor the current state-of-the-art Transformer model can deal with these features well. In this paper, a features fusion framework for multimodal irregular time-series events is proposed based on the Long Short-Term Memory networks (LSTM). Firstly, the complex features are extracted according to the irregular patterns of different events. Secondly, the nonlinear correlation and complex temporal dependencies relationship between complex features are captured and fused into a tensor. Finally, a feature gate are used to control the access frequency of different tensors. Extensive experiments on MIMIC-III dataset demonstrate that the proposed framework significantly outperforms to the existing methods in terms of AUC (the area under Receiver Operating Characteristic curve) and AP (Average Precision).

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot