Paper Reading AI Learner

Lost in Translation: Reimagining the Machine Learning Life Cycle in Education

2022-09-08 17:14:01
Lydia T. Liu, Serena Wang, Tolani Britton, Rediet Abebe

Abstract

Machine learning (ML) techniques are increasingly prevalent in education, from their use in predicting student dropout, to assisting in university admissions, and facilitating the rise of MOOCs. Given the rapid growth of these novel uses, there is a pressing need to investigate how ML techniques support long-standing education principles and goals. In this work, we shed light on this complex landscape drawing on qualitative insights from interviews with education experts. These interviews comprise in-depth evaluations of ML for education (ML4Ed) papers published in preeminent applied ML conferences over the past decade. Our central research goal is to critically examine how the stated or implied education and societal objectives of these papers are aligned with the ML problems they tackle. That is, to what extent does the technical problem formulation, objectives, approach, and interpretation of results align with the education problem at hand. We find that a cross-disciplinary gap exists and is particularly salient in two parts of the ML life cycle: the formulation of an ML problem from education goals and the translation of predictions to interventions. We use these insights to propose an extended ML life cycle, which may also apply to the use of ML in other domains. Our work joins a growing number of meta-analytical studies across education and ML research, as well as critical analyses of the societal impact of ML. Specifically, it fills a gap between the prevailing technical understanding of machine learning and the perspective of education researchers working with students and in policy.

Abstract (translated)

URL

https://arxiv.org/abs/2209.03929

PDF

https://arxiv.org/pdf/2209.03929.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot