Paper Reading AI Learner

Analyzing the Effect of Sampling in GNNs on Individual Fairness

2022-09-08 16:20:25
Rebecca Salganik, Fernando Diaz, Golnoosh Farnadi

Abstract

Graph neural network (GNN) based methods have saturated the field of recommender systems. The gains of these systems have been significant, showing the advantages of interpreting data through a network structure. However, despite the noticeable benefits of using graph structures in recommendation tasks, this representational form has also bred new challenges which exacerbate the complexity of mitigating algorithmic bias. When GNNs are integrated into downstream tasks, such as recommendation, bias mitigation can become even more difficult. Furthermore, the intractability of applying existing methods of fairness promotion to large, real world datasets places even more serious constraints on mitigation attempts. Our work sets out to fill in this gap by taking an existing method for promoting individual fairness on graphs and extending it to support mini-batch, or sub-sample based, training of a GNN, thus laying the groundwork for applying this method to a downstream recommendation task. We evaluate two popular GNN methods: Graph Convolutional Network (GCN), which trains on the entire graph, and GraphSAGE, which uses probabilistic random walks to create subgraphs for mini-batch training, and assess the effects of sub-sampling on individual fairness. We implement an individual fairness notion called \textit{REDRESS}, proposed by Dong et al., which uses rank optimization to learn individual fair node, or item, embeddings. We empirically show on two real world datasets that GraphSAGE is able to achieve, not just, comparable accuracy, but also, improved fairness as compared with the GCN model. These finding have consequential ramifications to individual fairness promotion, GNNs, and in downstream form, recommender systems, showing that mini-batch training facilitate individual fairness promotion by allowing for local nuance to guide the process of fairness promotion in representation learning.

Abstract (translated)

URL

https://arxiv.org/abs/2209.03904

PDF

https://arxiv.org/pdf/2209.03904.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot