Paper Reading AI Learner

Examining stability of machine learning methods for predicting dementia at early phases of the disease

2022-09-10 12:05:51
Sinan Faouri, Mahmood AlBashayreh, Mohammad Azzeh

Abstract

Dementia is a neuropsychiatric brain disorder that usually occurs when one or more brain cells stop working partially or at all. Diagnosis of this disorder in the early phases of the disease is a vital task to rescue patients lives from bad consequences and provide them with better healthcare. Machine learning methods have been proven to be accurate in predicting dementia in the early phases of the disease. The prediction of dementia depends heavily on the type of collected data which usually are gathered from Normalized Whole Brain Volume (nWBV) and Atlas Scaling Factor (ASF) which are normally measured and corrected from Magnetic Resonance Imaging (MRIs). Other biological features such as age and gender can also help in the diagnosis of dementia. Although many studies use machine learning for predicting dementia, we could not reach a conclusion on the stability of these methods for which one is more accurate under different experimental conditions. Therefore, this paper investigates the conclusion stability regarding the performance of machine learning algorithms for dementia prediction. To accomplish this, a large number of experiments were run using 7 machine learning algorithms and two feature reduction algorithms namely, Information Gain (IG) and Principal Component Analysis (PCA). To examine the stability of these algorithms, thresholds of feature selection were changed for the IG from 20% to 100% and the PCA dimension from 2 to 8. This has resulted in 7x9 + 7x7= 112 experiments. In each experiment, various classification evaluation data were recorded. The obtained results show that among seven algorithms the support vector machine and Naive Bayes are the most stable algorithms while changing the selection threshold. Also, it was found that using IG would seem more efficient than using PCA for predicting Dementia.

Abstract (translated)

URL

https://arxiv.org/abs/2209.04643

PDF

https://arxiv.org/pdf/2209.04643.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot