Paper Reading AI Learner

Neural Point-based Shape Modeling of Humans in Challenging Clothing

2022-09-14 17:59:17
Qianli Ma, Jinlong Yang, Michael J. Black, Siyu Tang

Abstract

Parametric 3D body models like SMPL only represent minimally-clothed people and are hard to extend to clothing because they have a fixed mesh topology and resolution. To address these limitations, recent work uses implicit surfaces or point clouds to model clothed bodies. While not limited by topology, such methods still struggle to model clothing that deviates significantly from the body, such as skirts and dresses. This is because they rely on the body to canonicalize the clothed surface by reposing it to a reference shape. Unfortunately, this process is poorly defined when clothing is far from the body. Additionally, they use linear blend skinning to pose the body and the skinning weights are tied to the underlying body parts. In contrast, we model the clothing deformation in a local coordinate space without canonicalization. We also relax the skinning weights to let multiple body parts influence the surface. Specifically, we extend point-based methods with a coarse stage, that replaces canonicalization with a learned pose-independent "coarse shape" that can capture the rough surface geometry of clothing like skirts. We then refine this using a network that infers the linear blend skinning weights and pose dependent displacements from the coarse representation. The approach works well for garments that both conform to, and deviate from, the body. We demonstrate the usefulness of our approach by learning person-specific avatars from examples and then show how they can be animated in new poses and motions. We also show that the method can learn directly from raw scans with missing data, greatly simplifying the process of creating realistic avatars. Code is available for research purposes at {\small\url{this https URL}}.

Abstract (translated)

URL

https://arxiv.org/abs/2209.06814

PDF

https://arxiv.org/pdf/2209.06814.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot