Paper Reading AI Learner

Self-Supervised Clustering on Image-Subtracted Data with Deep-Embedded Self-Organizing Map

2022-09-14 02:37:06
Y. -L. Mong, K. Ackley, T. L. Killestein, D. K. Galloway, M. Dyer, R. Cutter, M. J. I. Brown, J. Lyman, K. Ulaczyk, D. Steeghs, V. Dhillon, P. O'Brien, G. Ramsay, K. Noysena, R. Kotak, R. Breton, L. Nuttall, E. Palle, D. Pollacco, E. Thrane, S. Awiphan, U. Burhanudin, P. Chote, A. Chrimes, E. Daw, C. Duffy, R. Eyles-Ferris, B. P. Gompertz, T. Heikkila, P. Irawati, M. Kennedy, A. Levan, S. Littlefair, L. Makrygianni, T. Marsh, D. Mata Sanchez, S. Mattila, J. R. Maund, J. McCormac, D. Mkrtichian, J. Mullaney, E. Rol, U. Sawangwit, E. Stanway, R. Starling, P. Strom, S. Tooke, K. Wiersema


Developing an effective automatic classifier to separate genuine sources from artifacts is essential for transient follow-ups in wide-field optical surveys. The identification of transient detections from the subtraction artifacts after the image differencing process is a key step in such classifiers, known as real-bogus classification problem. We apply a self-supervised machine learning model, the deep-embedded self-organizing map (DESOM) to this "real-bogus" classification problem. DESOM combines an autoencoder and a self-organizing map to perform clustering in order to distinguish between real and bogus detections, based on their dimensionality-reduced representations. We use 32x32 normalized detection thumbnails as the input of DESOM. We demonstrate different model training approaches, and find that our best DESOM classifier shows a missed detection rate of 6.6% with a false positive rate of 1.5%. DESOM offers a more nuanced way to fine-tune the decision boundary identifying likely real detections when used in combination with other types of classifiers, for example built on neural networks or decision trees. We also discuss other potential usages of DESOM and its limitations.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot