Paper Reading AI Learner

Exploring Visual Interpretability for Contrastive Language-Image Pre-training

2022-09-15 05:01:03
Yi Li, Hualiang Wang, Yiqun Duan, Hang Xu, Xiaomeng Li

Abstract

Contrastive Language-Image pre-training (CLIP) learns rich representations via readily available supervisions of natural language. It could improve general performance on downstream vision tasks, including but not limited to zero-shot, long tail, segmentation, retrieval, caption and video. However, to the best of our knowledge, the visual interpretability of CLIP has not been studied yet. To provide visual explanations of its predictions, we propose the Image-Text Similarity Map (ITSM). Based on it, we surprisingly find that CLIP prefers the background regions than the foregrounds, and presenting erroneous visualization against human understanding. Experimentally, we find the devil is in the pooling part, where inappropriate pooling methods lead to a phenomenon called semantic shift. To correct and boost the visualization results, we propose the Masked Max Pooling, with attention map from the self-supervised image encoder. Meanwhile, interpretability task and recognition task require different representations. To address the problem, we propose the dual projections to cater this requirement. We integrate above methods as Interpretable Contrastive Language-Image pre-training (ICLIP). And experiments suggest ICLIP greatly improves the interpretability. For example, the nontrivial improvements are $32.85\%$ and $49.10\%$, respectively, on VOC 2012 dataset.

Abstract (translated)

URL

https://arxiv.org/abs/2209.07046

PDF

https://arxiv.org/pdf/2209.07046.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot