Paper Reading AI Learner

Responsible AI Implementation: A Human-centered Framework for Accelerating the Innovation Process

2022-09-15 06:24:01
Dian Tjondronegoro, Elizabeth Yuwono, Brent Richards, Damian Green, Siiri Hatakka

Abstract

There is still a significant gap between expectations and the successful adoption of AI to innovate and improve businesses. Due to the emergence of deep learning, AI adoption is more complex as it often incorporates big data and the internet of things, affecting data privacy. Existing frameworks have identified the need to focus on human-centered design, combining technical and business/organizational perspectives. However, trust remains a critical issue that needs to be designed from the beginning. The proposed framework expands from the human-centered design approach, emphasizing and maintaining the trust that underpins the process. This paper proposes a theoretical framework for responsible artificial intelligence (AI) implementation. The proposed framework emphasizes a synergistic business technology approach for the agile co-creation process. The aim is to streamline the adoption process of AI to innovate and improve business by involving all stakeholders throughout the project so that the AI technology is designed, developed, and deployed in conjunction with people and not in isolation. The framework presents a fresh viewpoint on responsible AI implementation based on analytical literature review, conceptual framework design, and practitioners' mediating expertise. The framework emphasizes establishing and maintaining trust throughout the human-centered design and agile development of AI. This human-centered approach is aligned with and enabled by the privacy by design principle. The creators of the technology and the end-users are working together to tailor the AI solution specifically for the business requirements and human characteristics. An illustrative case study on adopting AI for assisting planning in a hospital will demonstrate that the proposed framework applies to real-life applications.

Abstract (translated)

URL

https://arxiv.org/abs/2209.07076

PDF

https://arxiv.org/pdf/2209.07076.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot