Paper Reading AI Learner

Modeling Multiple Views via Implicitly Preserving Global Consistency and Local Complementarity

2022-09-16 09:24:00
Jiangmeng Li, Wenwen Qiang, Changwen Zheng, Bing Su, Farid Razzak, Ji-Rong Wen, Hui Xiong

Abstract

While self-supervised learning techniques are often used to mining implicit knowledge from unlabeled data via modeling multiple views, it is unclear how to perform effective representation learning in a complex and inconsistent context. To this end, we propose a methodology, specifically consistency and complementarity network (CoCoNet), which avails of strict global inter-view consistency and local cross-view complementarity preserving regularization to comprehensively learn representations from multiple views. On the global stage, we reckon that the crucial knowledge is implicitly shared among views, and enhancing the encoder to capture such knowledge from data can improve the discriminability of the learned representations. Hence, preserving the global consistency of multiple views ensures the acquisition of common knowledge. CoCoNet aligns the probabilistic distribution of views by utilizing an efficient discrepancy metric measurement based on the generalized sliced Wasserstein distance. Lastly on the local stage, we propose a heuristic complementarity-factor, which joints cross-view discriminative knowledge, and it guides the encoders to learn not only view-wise discriminability but also cross-view complementary information. Theoretically, we provide the information-theoretical-based analyses of our proposed CoCoNet. Empirically, to investigate the improvement gains of our approach, we conduct adequate experimental validations, which demonstrate that CoCoNet outperforms the state-of-the-art self-supervised methods by a significant margin proves that such implicit consistency and complementarity preserving regularization can enhance the discriminability of latent representations.

Abstract (translated)

URL

https://arxiv.org/abs/2209.07811

PDF

https://arxiv.org/pdf/2209.07811.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot