Paper Reading AI Learner

Learning Distinct and Representative Modes for Image Captioning

2022-09-17 03:25:46
Qi Chen, Chaorui Deng, Qi Wu

Abstract

Over the years, state-of-the-art (SoTA) image captioning methods have achieved promising results on some evaluation metrics (e.g., CIDEr). However, recent findings show that the captions generated by these methods tend to be biased toward the "average" caption that only captures the most general mode (a.k.a, language pattern) in the training corpus, i.e., the so-called mode collapse problem. Affected by it, the generated captions are limited in diversity and usually less informative than natural image descriptions made by humans. In this paper, we seek to avoid this problem by proposing a Discrete Mode Learning (DML) paradigm for image captioning. Our innovative idea is to explore the rich modes in the training caption corpus to learn a set of "mode embeddings", and further use them to control the mode of the generated captions for existing image captioning models. Specifically, the proposed DML optimizes a dual architecture that consists of an image-conditioned discrete variational autoencoder (CdVAE) branch and a mode-conditioned image captioning (MIC) branch. The CdVAE branch maps each image caption to one of the mode embeddings stored in a learned codebook, and is trained with a pure non-autoregressive generation objective to make the modes distinct and representative. The MIC branch can be simply modified from an existing image captioning model, where the mode embedding is added to the original word embeddings as the control signal. In the experiments, we apply the proposed DML to two widely used image captioning models, Transformer and AoANet. The results show that the learned mode embedding successfully facilitates these models to generate high-quality image captions with different modes, further leading to better performance for both diversity and quality on the MSCOCO dataset.

Abstract (translated)

URL

https://arxiv.org/abs/2209.08231

PDF

https://arxiv.org/pdf/2209.08231.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot