Paper Reading AI Learner

Learning Invariant Representations for Equivariant Neural Networks Using Orthogonal Moments

2022-09-22 11:48:39
Jaspreet Singh, Chandan Singh

Abstract

The convolutional layers of standard convolutional neural networks (CNNs) are equivariant to translation. However, the convolution and fully-connected layers are not equivariant or invariant to other affine geometric transformations. Recently, a new class of CNNs is proposed in which the conventional layers of CNNs are replaced with equivariant convolution, pooling, and batch-normalization layers. The final classification layer in equivariant neural networks is invariant to different affine geometric transformations such as rotation, reflection and translation, and the scalar value is obtained by either eliminating the spatial dimensions of filter responses using convolution and down-sampling throughout the network or average is taken over the filter responses. In this work, we propose to integrate the orthogonal moments which gives the high-order statistics of the function as an effective means for encoding global invariance with respect to rotation, reflection and translation in fully-connected layers. As a result, the intermediate layers of the network become equivariant while the classification layer becomes invariant. The most widely used Zernike, pseudo-Zernike and orthogonal Fourier-Mellin moments are considered for this purpose. The effectiveness of the proposed work is evaluated by integrating the invariant transition and fully-connected layer in the architecture of group-equivariant CNNs (G-CNNs) on rotated MNIST and CIFAR10 datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2209.10944

PDF

https://arxiv.org/pdf/2209.10944.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot