Paper Reading AI Learner

CONE: An Efficient COarse-to-fiNE Alignment Framework for Long Video Temporal Grounding

2022-09-22 10:58:42
Zhijian Hou, Wanjun Zhong, Lei Ji, Difei Gao, Kun Yan, Wing-Kwong Chan, Chong-Wah Ngo, Zheng Shou, Nan Duan

Abstract

Video temporal grounding (VTG) targets to localize temporal moments in an untrimmed video according to a natural language (NL) description. Since real-world applications provide a never-ending video stream, it raises demands for temporal grounding for long-form videos, which leads to two major challenges: (1) the long video length makes it difficult to process the entire video without decreasing sample rate and leads to high computational burden; (2) the accurate multi-modal alignment is more challenging as the number of moment candidates increases. To address these challenges, we propose CONE, an efficient window-centric COarse-to-fiNE alignment framework, which flexibly handles long-form video inputs with higher inference speed, and enhances the temporal grounding via our novel coarse-to-fine multi-modal alignment framework. Specifically, we dynamically slice the long video into candidate windows via a sliding window approach. Centering at windows, CONE (1) learns the inter-window (coarse-grained) semantic variance through contrastive learning and speeds up inference by pre-filtering the candidate windows relevant to the NL query, and (2) conducts intra-window (fine-grained) candidate moments ranking utilizing the powerful multi-modal alignment ability of a contrastive vision-text pre-trained model. Extensive experiments on two large-scale VTG benchmarks for long videos consistently show a substantial performance gain (from 3.13% to 6.87% on MAD and from 10.46% to 13.46% on Ego4d-NLQ) and CONE achieves the SOTA results on both datasets. Analysis reveals the effectiveness of components and higher efficiency in long video grounding as our system improves the inference speed by 2x on Ego4d-NLQ and 15x on MAD while keeping the SOTA performance of CONE.

Abstract (translated)

URL

https://arxiv.org/abs/2209.10918

PDF

https://arxiv.org/pdf/2209.10918.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot