Paper Reading AI Learner

IntereStyle: Encoding an Interest Region for Robust StyleGAN Inversion

2022-09-22 06:31:07
Seungjun Moon, GyeongMoon Park

Abstract

Recently, manipulation of real-world images has been highly elaborated along with the development of Generative Adversarial Networks (GANs) and corresponding encoders, which embed real-world images into the latent space. However, designing encoders of GAN still remains a challenging task due to the trade-off between distortion and perception. In this paper, we point out that the existing encoders try to lower the distortion not only on the interest region, e.g., human facial region but also on the uninterest region, e.g., background patterns and obstacles. However, most uninterest regions in real-world images are located at out-of-distribution (OOD), which are infeasible to be ideally reconstructed by generative models. Moreover, we empirically find that the uninterest region overlapped with the interest region can mangle the original feature of the interest region, e.g., a microphone overlapped with a facial region is inverted into the white beard. As a result, lowering the distortion of the whole image while maintaining the perceptual quality is very challenging. To overcome this trade-off, we propose a simple yet effective encoder training scheme, coined IntereStyle, which facilitates encoding by focusing on the interest region. IntereStyle steers the encoder to disentangle the encodings of the interest and uninterest regions. To this end, we filter the information of the uninterest region iteratively to regulate the negative impact of the uninterest region. We demonstrate that IntereStyle achieves both lower distortion and higher perceptual quality compared to the existing state-of-the-art encoders. Especially, our model robustly conserves features of the original images, which shows the robust image editing and style mixing results. We will release our code with the pre-trained model after the review.

Abstract (translated)

URL

https://arxiv.org/abs/2209.10811

PDF

https://arxiv.org/pdf/2209.10811.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot